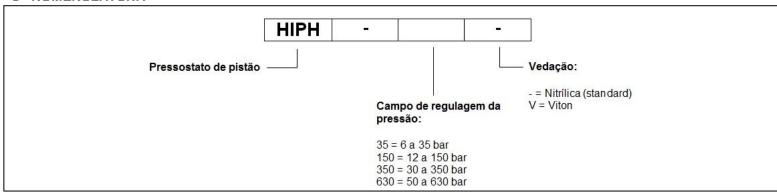


PRESSOSTATO DE PISTÃO **SÉRIE 20**

P máx 650 bar

P máx de intervenção 35-150-350-630 bar

1 - PRINCÍPIO DE FUNCIONAMENTO


- Os pressostatos HIPH são interruptores eletro hidráulicos do tipo pistão, com contato elétrico que atua quando se alcança um valor de pressão préfixado.
- A pressão no circuito hidráulico atua sobre o pistão (1) que é contraído pela mola (2) que é regulada por um aperto (3). Ao alcançar a pressão de calibração, o pistão (1) se move provocando uma mudança do micro contato
- Os pressostatos estão disponíveis em 4 campos de pressão de 35 a 630 bar.

2 - CARACTERÍSTICAS TÉCNICAS

TIPO DO PRESSOSTATO		HIPH - 35	HIPH - 150	HIPH - 350	HIPH - 630		
Intervalo de regulagem de pressão	bar	6 a 35	12 a 150	30 a 350	50 a 630		
Pressão máxima de trabalho	bar		650				
Histerese	Vers	seção 7	SÍMBOLOS				
Repetibilidade	< ± 1% do	valor ajustado	**				
Características elétricas	Ver seção 5			BOLO 3 O	<u> </u>		
Temperatura ambiente	°C	-20 / +50		2 5			
Temperatura do fluido	°C	-20 / +75		P			
Viscosidade do fluido	cSt	30 a 100		2 ESQUEM	A		
Viscosidade efetiva recomendada	cSt	25		3 ELÉTRIC	0		
Grau de contaminação do fluido	Segundo NAS 1638 classe 10			1			
Peso	kg	0,35	1				

3 - NOMENCLATURA

4 - FLUIDOS HIDRÁULICOS

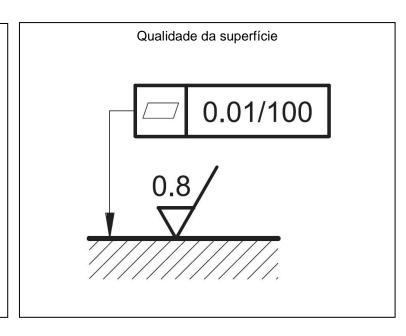
Usar fluidos hidráulicos a base de óleo mineral tipo HH, HL ou HM segundo ISO 6743-4.

Para fluidos do tipo HFDR (ésteres fosfóricos) utilizar juntas em FPM (código V). Para outros tipos de fluidos, como HFA, HFB e HFC, consultar nosso Departamento Técnico.

O uso de fluidos a temperatura superior a 80°C determina uma precoce diminuição das propriedades do fluido e dos tipos de juntas. O fluido deve manter intactas suas propriedades físicas e químicas.

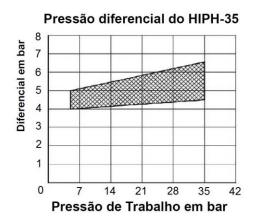
5 - CARACTERÍSTICAS ELÉTRICAS

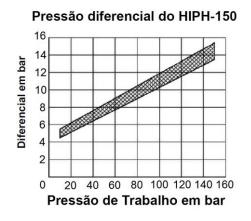
		Corrente	Corrente alternada		Corrente contínua	
Tensão de alimentação	V	125	250	30	150	
Carga máxima sobre os contatos - resistivo - indutivo	A	7 4	5 2	5 3	0,2 0,02	
Isolamento elétrico (segundo CEI em 60204)	-		> 1MΩ a 500 Vcc			
Frequência máxima de inserção	ciclos/min		120			
MTBF partes mecânicas	ciclos		10000000			
MTBF contatos elétricos	CICIOS			2000000		
Grau de proteção (segundo IEC 144)	-		IP 65			

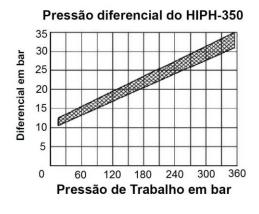

6 - INSTALAÇÃO

Os pressostatos para serem montados em placa/bloco podem ser instalados em qualquer posição sem prejudicar o seu correto funcionamento.

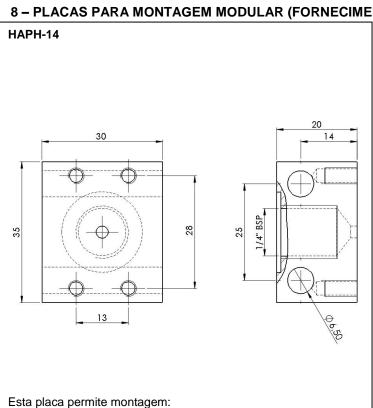
Certifique-se que o circuito hidráulico não contenha ar.

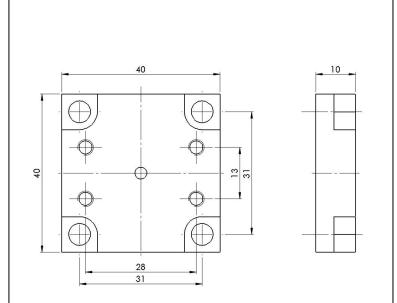

Os pressostatos se fixam por meio de parafusos apoiados sobre uma superfície retificada cujos valores de planitude e rugosidade são iguais ou menores que os indicados pelos símbolos correspondentes. Se os valores mínimos de planaridade e/ou rugosidade não são respeitados pode facilmente se verificar perdas de fluido entre o pressostato e o plano de apoio.


Como alternativa, os pressostatos podem ser instalados em linha usando a placa HAPH-14.



7 – CURVAS DE HISTERESES (valores obtidos com viscosidade 36 cSt a 50°C)

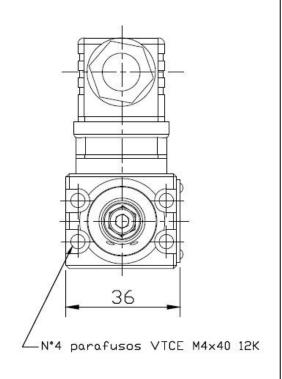


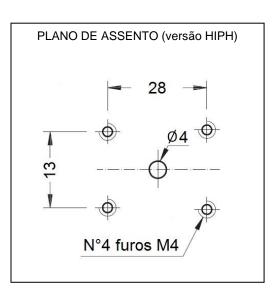


8 - PLACAS PARA MONTAGEM MODULAR (FORNECIMENTO A PARTE)

Painel montado usando adaptador com 2 furos e/ou montagem diretamente em linha.

Esta placa permite montagem:


HAP-14


Como um substituto do pressostato tipo PSP Duplomatic.

9 – DIMENSÕES PARA INSTALAÇÃO

- 1 A HT se reserva a direito de alterar as informações contidas neste catálogo sem aviso prévio.
- 2 Reprodução proibida.
- 3 Se não indicado, dimensões em milímetros.

